
GPUs 101

Jack Deslippe

Application Performance Lead
NERSC

NERSC Systems Roadmap

NERSC-7:
Edison
Multicore
CPU

NERSC-8: Cori
Manycore CPU
NESAP Launched:
transition applications to
advanced architectures

2013
2016

2025

 NERSC-9: Perlmutter
CPU and GPU nodes
Continued transition of
applications and support for
complex workflows

2020

NERSC-10:
Exa system

2029

NERSC-11:
Beyond
Moore

Increasing need for energy-efficient architectures

DOE HPC Roadmap

Cori at NERSC

Summit at OLCF (NVidia Volta)

2016 2017 2018 2019 2020 2021 2022 2023

Intel GPUs
NVIDIA Volta GPUs

NVIDIA GPUs

AMD GPUs

Energy Efficiency Across Architectures

Circles: EDISON@NERSC CPU only
Squares: SUMMIT@OLCF CPU+GPU

Improving
Energy
Efficiency

Change Has Arrived (Whether you want it to or not)

Cori is a boon to science in the U.S. because of new capabilities, but the Intel Xeon

Phi many-core architecture requires a code modernization effort to use efficiently.

Driven by power
consumption and
heat dissipation
toward lightweight
cores

KNL: 215-230 W
2-socket Haswell: 270 W

The Main Things You Need to Know About Programming
A100 GPUs

1. You Need Lots of Parallelism

CPUs to GPUs

CPU (Haswell)
• 64 cores
• 2 threads each
• 2x256-bit vectors
• double precision

• ~2000 way parallelism
(64*4*8)

GPU (A100)
• 108 SM
• Up to 64 warps per SM

(2 active at a time)

• 32 SIMT per warp
• double precision

• 200,000+ way
parallelism
(108*64*32)

CPUs to GPUs

CPU (Haswell)
• 64 cores
• 2 threads each
• 2x256-bit vectors
• double precision

• ~2000 way parallelism
(64*4*8)

GPU (A100)
• 108 SM
• Up to 64 warps per SM

(2 active at a time)

• 32 SIMT per warp
• double precision

• 200,000+ way
parallelism
(108*64*32)

Oversubscribing GPUs
(w/ Warps and
Streams) helps hide
latency, too!

The Main Things You Need to Know About Programming
A100 GPUs

1. You Need Lots of Parallelism

2. A100 GPU Memory is Very Fast. But, moving data
to the GPU is Not.

CPUs to GPUs

CPU (Haswell)
• 128GB DDR
• ~120 GB/Sec Memory

Bandwidth

GPU (A100)
• 40GB HBM
• 1,500 GB/Sec Memory

Bandwidth

CPUs to GPUs

CPU (Haswell)
• 128GB DDR
• ~120 GB/Sec Memory

Bandwidth

GPU (A100)
• 40GB HBM
• 1,500 GB/Sec Memory

Bandwidth

PCIe ~ 32 GB/Sec

CPUs to GPUs

CPU (Haswell)
• 128GB DDR
• ~120 GB/Sec Memory

Bandwidth

GPU (A100)
• 40GB HBM
• 1,500 GB/Sec Memory

Bandwidth

PCIe ~ 32 GB/Sec

Try to avoid moving
data back and forth
frequently

The Main Things You Need to Know About Programming
A100 GPUs

1. You Need Lots of Parallelism

2. A100 GPU Memory is Very Fast. But, moving data to the GPU is
Not.

Other Second Order Considerations:

3. There is some overhead in launching kernels. Fusing short kernels together and
defining “CUDA Graphs” can help.

The Main Things You Need to Know About Programming
A100 GPUs

1. You Need Lots of Parallelism

2. A100 GPU Memory is Very Fast. But, moving data to the GPU is
Not.

Other Second Order Considerations:

3. There is some overhead in launching kernels. Fusing short kernels together and
defining “CUDA Graphs” can help.

4. HBM is fast, but keeping data in registers, cache and “shared” memory is better!

The Main Things You Need to Know About Programming
A100 GPUs

1. You Need Lots of Parallelism

2. A100 GPU Memory is Very Fast. But, moving data to the GPU is
Not.

Other Second Order Considerations:

3. There is some overhead in launching kernels. Fusing short kernels together and
defining “CUDA Graphs” can help.

4. HBM is fast, but keeping data in registers, cache and “shared” memory is better!
Find optimal balance between maximizing parallelism and minimizing register spills.

Perlmutter Supports Every GPU Programming Model

Fortran/
C/C++

CUDA OpenACC
2.x

OpenMP
5.x

CUDA
Fortran

Kokkos /
Raja

MPI HIP DPC++ /
SYCL

NVIDIA

CCE

GNU

LLVM

NERSC
Supported

Vendor
Supported

OpenMP NRE partnership with NVIDIA
• Agreed upon subset of OpenMP

features to be included in the NVIDIA
(was PGI) compiler

• OpenMP test suite created with
micro-benchmarks, mini-apps, and the
ECP SOLLVE V&V suite

• 5 NESAP application teams partnered
with NVIDIA to add OpenMP target
offload directives

• The production OpenMP offload
compiler was released in April 2021.

Hackathons

(https://www.gpuhackathons.org) NERSC
provided more team mentors than any
other institution to worldwide events in
2020.

Allows us to reach NERSC teams all
around the country and world

“Hackathons” have proven to be a highly
effective tool for preparing applications for
new architectures.

NERSC adapted the hackathon format for the COVID
work-from-home environment.

Features of this format were popular and effective and
we plan to incorporate them into future hackathons.

https://www.gpuhackathons.org

Broad impact and enablement

Community GPU hack-a-thons

Programming models and
languages

kokkos

Community Codes

ortran

Community Resources

Vendor tools

Optimization Challenges For Scientists

Teams often want simple way to wrap their heads around performance when main
focus is scientific productivity:

1. Need a sense of absolute performance when optimizing applications.
- How do I know if my performance is good?
- Why am I not getting peak performance advertised
- How do I know when to stop?

2. Many potential optimization directions:
- How do I know which to apply?
- What is the limiting factor in my app’s performance?
- Again, how do I know when to stop?

Roofline on GPUs

nvprof / Nsight can collect all required metrics
including data motion from multiple levels of
memory hierarchy: L1/Shared, L2, DRAM, etc.

Can Plot Roofline Performance Curves within
NSight!

GPP on V100

Projected Application Performance

● We use Perlmutter and Previous
GPU performance
measurements to
estimate/extrapolate a system
wide throughput speedup on
Perlmutter vs. Edison (the
NERSC-7 system).

● Applications from different
science areas and algorithmic
spaces are able to utilize
Perlmutter GPUs

Perlmutter System-Wide Performance Performance
6 applications from different areas of the workload
achieve 20X Systemwide throughput increase over
Edison.

Data Electronic
Structure

Learning/AI Molecular
Dynamics

Particles &
Grids

LQCD

100 –

90 –

80 –

70 –

60 –

50 –

40 –

30 –

20 –

10 –

0 –

S
ys

te
m

 S
S

I R
el

at
iv

e
to

 E
di

so
n

Based on measured
application performance for

6 representative
applications

Perlmutter vs. Edison Node vs. Node Speedups

Yellow: minimum PM performance
based on extrapolated perf.

Science Examples

DESI
Science: Understand Dark Energy

Scientists believe about 70 percent
of the universe is dark energy,
although we don’t have a good
understanding of what it is

The DESI instrument will send NERSC data
every night for 5 years

Data will be used to construct
the most detailed 3D map of
the universe to date and
better understand the nature
of dark energy

Dark Energy Spectroscopic Instrument

DESI
Dark Energy Spectroscopic Instrument

• DESI Spectral Extraction is an image
processing code implemented in Python.

• Completed major refactor of optimized CPU
code and initial GPU port in early 2020.

• Major optimization milestones include:
saturating GPU utilization using MPI and CUDA
Multi-Process Service, refactoring code to
leverage batched linear algebra operations on
GPU, and interleaving IO with computation.

• 25x improvement in per-node throughput using
Perlmutter compared to Edison baseline.

ExaFEL
XFEL requires real-time data analysis to make decisions during ongoing experiments.
Data collection rates outpacing computational resources at the experimental sites, requiring
a Superfacility approach.

In two years, NESAP has developed a highly scalable CUDA/GPU application.
CCTBX/nanoBragg w/ runtime improved from 12.3 hours on Edison, to 2 minutes

CCTBX/nanoBragg strong scaling on Summit.
Colored lines show number of concurrent
streams per GPU

LAMMPs

NESAP
Hackathons

• LAMMPS is a classical molecular dynamics
code with a focus on materials modeling

• Production LAMMPS/Kokkos version was highly
optimized over a serious of hackathons - Joint
effort of NERSC/NESAP, ECP, NVIDIA and HPE

• Every kernel was rewritten and optimized
individually, compared to baseline

• 22x improvement in performance compared to
baseline on NVIDIA V100 GPU (previous
generation than on Perlmutter).

• SSI is the system-wide throughput increase over
Edison in atom-steps/second.

 SSI: 69
Node vs Node Speedup: 250x

Record Scale MD With LAMMPs
Gordon Bell Finalists
● Collaborative effort: University of South Florida, Sandia, NERSC and NVIDIA

● Billion atom molecular dynamics simulation (20B atoms)
○ SNAP quantum-accurate machine learned interatomic potential

○ Kokkos CUDA backend for NVIDIA GPUs

○ A run achieved 11.24 PFLOPS on Perlmutter on 1024 nodes (~ 2/3rd of the total machine)

● Simulation model shock compression of carbon at extreme pressures and

temperatures.

Record Scale MD With LAMMPs
Gordon Bell Finalists
Strong scaling the amorphous carbon

problem on Perlmutter and related

systems.

Qubit Design w/ BerkeleyGW
The BerkeleyGW NESAP team was
recognized as a Gordon Bell finalist in 2020.

● Si-214 system (scaled: 4Ry CT ;
3000 bands). 8 GPUs each.

MTXEL CHI-0 Total
OpenACC (V100) 64 27 100
OpenACC (A100) 49.8 14.2 69
CUDA (V100) 15.2 14.7 41
CUDA (A100) 12.6 8.7 26.2

Cori GPU (V100) vs
Perlmutter (A100)

Exabiome (Meta-Genomics)
● A lot of progress has been made on GPU

algorithms for meta-genomics.
● This NESAP team wrote the world’s fastest GPU

aligners using a lot of clever strategies, newly
available GPU intrinsic instructions etc.

● With the help of warp level intrinsics, dynamic
data structures were written for GPUs from
scratch to re-write the Local Assembly stage.

Accelerating CFD with
GANs on Perlmutter
The FlowGAN project introduces a technique based
on a deep neural network architecture to augment
traditional numerical simulations of fluid flows. The
ML model is used to correct the numerical errors
induced by a coarse-grid simulation of turbulent
flows at high-Reynolds numbers.

FlowGAN architecture:

2.9x
performance
improvement
over CoriGPU
on ML
workflow

Performance
Comparison:

Key Takeaways
● NERSC successful in preparing a significant number of key Office of Science

applications for Perlmutter. Keys to success:
○ Early engagement and access to GPU technologies

○ Embedded Postdocs

○ Focused Hackathons

● NERSC continuing to engage w/ broad community to enable use of Perlmutter
productively

○ Encouraging community to join GPUHackathons.org events all over the country

● GPU optimizations (Increasing Parallelism, Understanding and Minimizing Code
Movement) continue on themes from Cori

● OpenMP and C++ Frameworks (Kokkos etc.) are viable performance portable
options.

Thank you !

